Gender Differences in Clinical Practice

Gender related differences in patient presentation, management and outcome across different manifestations of cardiovascular disease

Dr Caroline Daly, MB PhD Cardiologist, Dublin

Gender Differences: Historical Male Focus

Sex differences in CV disease in 1990's

1991 NEJM
Ayanian \& Epstein

- Women presenting with coronary disease less likely to have invasive investigation, PTCA or surgery

SAVE Study

- Less angiography in women post infarction

Wenger editorial

- "Yentl Syndrome"
- Reproach to "bikini" approach to womens' health, ignoring cardiovascular disease

Professional Society Support

- 2005 Women at Heart Initiative of ESC

- 2005 Go Red For

Women by AHA

Scope of the problem

- Cardiovascular risks $/ 1^{\circ}$ and 2° prevention
- Hypertension
- Hyperlipidaemia
- Coronary Heart Disease
- Angina
- Acute coronary Syndrome/MI
- Heart Failure
- Arrhythmia
- Congenital Heart Disease

Scope of the problem

- Epidemiology/Natural History
- Morbidity and mortality (incl temporal trends)
- Access to services
- Investigation
- Pharmacological treatment
- Other treatments eg revasculatisation

Euro Heart Survey Programme

- Programme of surveys launched 1999 by ESC

Aims

- Applicability of evidence based medicine
- How clinical practice match guidelines
- Process and outcome associated with cardiac conditions in "real world", outside RCT's

Euro Heart Survey Programme

	1996	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
Prevention Euro Aspire	+	+							+		
Heart Failure			$+$				$+$				
Acute Coronary Syndromes (ACS)		+				+					+
Valvular HD				$+$							
Revascularisation			$+$					$+$			
Angina					$+$						
Diabetes					$+$						
Atrial Fibrillation						+					
Adult Congenital Heart Disease						+					

Scope of the problem

Cardiovascular risks/Primary prevention

- Hypertension
- Hyperlipidaemia
- Coronary Heart Disease
- Angina
- Acute coronary Syndrome/MI
- Heart Failure
- Arrhythmia
- Congenital Heart Disease

Age-Adjusted and Age-Specific Hypertension Awareness, Treatment, and Control in the U.S. Population Aged 60 and Older with Hypertension: National Health and Nutrition Examination Survey (NHANES) III (1988-1994) and NHANES 1999-2004

NHANES III
NHANES 1999-2004
\(\left.\left|\begin{array}{c|c|c|c}Control

in\end{array}\right| \quad \right\rvert\,\)| Control |
| :---: |
| in |

Aware Treated Treated Aware Treated Treated

Percent

70	58	36	74	67	43

Sex Male Female

65	52	39	74	68	51
74	62	35	74	67	37

EUROASPIRE I, II \& III 1995/6, 1999/2000 \& 2006/7

| | Raised blood pressure | | Raised cholesterol | | Reported diabetes | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

Mean age 59, 25\% female
Kotseva Lancet 2009

EUROASPIRE I, II \& III Proportion of pts achieving target BP

No blood pressure lowering Tx Blood Pressure Lowering Tx

	I	II	III	I	II	III
Men	$182 / 393$	$104 / 219$	$32 / 62$	$861 / 1995$	$849 / 2004$	$693 / 1761$
	$(46 \cdot 3 \%)$	$(47 \cdot 5 \%)$	$(51 \cdot 6 \%)$	$(43 \cdot 2 \%)$	$(42 \cdot 4 \%)$	(39.4\%)
Women	$47 / 99$	$28 / 60$	$8 / 12$	$241 / 691$	$258 / 686$	$196 / 535$
	$(47 \cdot 5 \%)$	$(46 \cdot 7 \%)$	$(66 \cdot 7 \%)$	$(34 \cdot 9 \%)$	$(37 \cdot 6 \%)$	(36.6\%)

Mean age 59, 25\% female
Kotseva Lancet 2009

Scope of the problem

- Cardiovascular risks/Primary prevention
- Hypertension
- Hyperlipidaemia
- Coronary Heart Disease
- Acute coronary Syndrome/MI
- Angina
- Heart Failure
- Arrhythmia
- Congenital Heart Disease

Meta-analysis of RCT data on ACS

Table 1. Summary of Trials Used in the Study

Source	No./Total No. (\%) of Patients Enrolled		Type of ACS Evaluated	Intervention
	Women	Men		
$\begin{gathered} \text { GUSTO I, }{ }^{25} \\ 1993 \end{gathered}$	10315/40968 (25.2)	30653/40968 (74.8)	STEMI	Streptokinase and subcutaneous heparin, streptokinase and intravenous heparin, accelerated tissue plasminogen activator and intravenous heparin, or a combination of streptokinase plus tissue plasminogen activator with intravenous heparin
$\begin{gathered} \text { GUSTO llb, }{ }^{26} \\ 1996 \end{gathered}$	3661/12 140 (30.2)	8479/12 140 (69.8)	STEMI, NSTEMI, unstable angina	Heparin; hirudin
$\begin{gathered} \text { GUSTO III, }{ }^{27} \\ 1997 \end{gathered}$	4124/15059 (27.4)	10935/15059 (72.6)	STEMI	Tissue plasminogen activator; reteplase
$\begin{gathered} \hline \text { ASSENT II, }{ }^{28} \\ 1999 \end{gathered}$	3930/17004 (23.1)	13074/17004 (76.9)	STEMI	Tissue plasminogen activator; tenecteplase
$\begin{gathered} \hline \text { ASSENT III, }{ }^{29} \\ 2001 \end{gathered}$	1438/6116 (23.5)	4678/6116 (76.5)	STEMI	Full-dose tenecteplase and heparin; full-dose tenecteplase and enoxaparin; half-dose tenecteplase and abciximab
$\begin{aligned} & \text { ASSENT III }+{ }^{30} \\ & 2003 \end{aligned}$	378/1639 (23.1)	1261/1639 (76.9)	STEMI	Full-dose tenecteplase and heparin; full-dose tenecteplase and enoxaparin
$\begin{gathered} \hline \text { HERO 2, }{ }^{31} \\ 2001 \end{gathered}$	4850/17087 (28.4)	12237/17087 (71.6)	STEM	Bivalirudin; heparin; streptokinase
$\begin{gathered} \hline \text { PURSUIT, }{ }^{32} \\ 2000 \end{gathered}$	3857/10947 (35.2)	7090/10947 (64.8)	NSTEMI, unstable angina	Placebo; low-dose eptifibatide; high-dose eptifibatide
$\begin{aligned} & \hline \text { PARAGON A, }{ }_{1}^{33} \\ & 1998 \end{aligned}$	776/2262 (34.3)	1486/2262 (65.7)	NSTEMI, unstable angina	Low-dose lamifiban with and without heparin; high-dose lamifiban with and without heparin
$\begin{aligned} & \hline \text { PARAGON B, }{ }^{34} \\ & 2000 \\ & \hline \end{aligned}$	1789/5225 (34.2)	3436/5225 (65.8)	NSTEMI, unstable angina	Lamifiban; heparin
$\begin{gathered} \hline \text { GUSTO IV, }^{35} \\ 2001 \\ \hline \end{gathered}$	2930/7800 (37.6)	4870/7800 (62.4)	NSTEMI, unstable angina	Heparin; 24-h abciximab; 48-h abciximab
Total	38048/136247 (27.9)	98199/136 247 (72.1)		

Abbreviations: ACS, acute coronary syndromes; NSTEMI, non-ST-segment elevation myocardial infarction; STEMI, ST-segment elevation myocardial infarction.
Berger, J. S. et al. JAMA 2009;302:874-882.

Unadjusted and Multivariable-Adjusted 30-Day Mortality Models in Women vs Men Across the Spectrum of ACS ($\mathrm{n}=136$ 247)

Euro Heart Survey of Acute Coronary Syndromes I

- Pan European Survey of patients with acute coronary syndromes presenting to hospitals across Europe
- Diagnosis of ACS at presentation assessed
- Use of investigations and treatments surveyed
- In hospital outcome assessed in this analysis

Enrollment: September 2000 to May 2001

EHS ACS I $n=10,253$ Initial Diagnosis

$<65 \mathrm{yrs}$
$>65 \mathrm{yrs}$

Female 56\%

Gender differences at presentation

$>$ Women are older, more likely to have a history of diabetes or hypertension and less likely to smoke

Women less than 65

- More atypical chest pain OR 1.7 (1.3-2.2)
- More normal ECG's OR 1.3 (1.1-1.5)
- Higher HR and Systolic BP

Women over 65

- Symptoms and ECG findings similar
- Higher HR and Systolic BP
- Greater severity of Killip Class. $p=0.009$

"Normal" coronary angiography

Variation in Spectrum of ACS

- Discharge diagnosis of "Unstable Angina" more likely in younger women OR 1.56 (1.35-1.79), not so in older age group
- Hochman et al, NEJM 1999 (GUSTO IIb)
- ? Different pathophysiological process at play
- Finding confirmed in unselected population and found to be significantly age dependent

Reperfusion therapy (ST elevation MI only)

```
< 65 yrsns
```



```
\(>65 \mathrm{yrs}\)
```


In-Hospital mortality

In-Hospital mortality

EHS PCI survey (2005):

Predictors of in-hospital MACCE in STEMI patients Baseline data and angiographic information ($\mathrm{n}=2621$)

Summary of gender differences in ACS I

- Women are more likely to present with non ST elevation MI or have unstable angina than men
- Women have more adverse baseline characteristics and older women present with more worse clinical predictors (Killip Class etc)
- Women with ST elevation are 1/3 less likely than men to receive reperfusion
- Crude in-hospital mortality for women is twice that of men, but after adjustment differences not significant

Gender related coronary disease manifestations

First manifestations of CHD by sex from 26 year
follow-up of Framingham (Lerner \& Kannel 1986)
Finnish Data
Reunanen et al '85
Men

- MI
- followed by Angina
- then sudden death

In Women the distribution of events is changed

- MI
- Angina
- sudden death

43\%
26\% 29\%
10\%

29\%
47\%
50\%

Age and sex specific incidence of Angina

Age and sex specific incidence of Angina

Prevalence of Stable Angina

Study	Country	Years	Age	Definition	Male	Female
	Wales	1967	$30-74$	Rose		17.8%
9 Comm	Italy	$1978-79$	$30-69$	Rose	2.3%	3.1%
SHS	Scotland	$1979-80$	$40-59$	Rose	6.3%	8.5%
BRHS	UK	$1978-80$	$40-59$	Rose	4.8%	
EPES	USA	$1981-83$	>65	Rose	$3-4 \%$	$4-6 \%$
CVHS	USA	$1989-90$	>65	Confirmed self-report	16%	10%
NHANES	USA	$1988-94$	$40-65$	Rose	5.2%	6.2%
PANES	Spain	1990 's	$30-69$	Rose	7.3%	7.8%

Sex ratios in Rose angina prevalence ([PR] 95\% Cls)

Hemingway, H. et al. Circulation 2008;117:15261536

American Heart Association

Learn and Live

Liverpool Primary Care Study 2001

Liverpool Primary Care Study 2001

RISK FACTOR RECORDINO Smoking habit Cholesterol BP previous 12 morths Body Mass Index All 4 risk factors recorded SECONDARY PREVENTION

Aspirin
Statin
Beta Blocker
Aspirin + Statin + Beta Blocker
Beta Blocker 'prior Mr ($\mathrm{n}=402$) INVESTIGATION

Exercise Electrocardiograph
Coronary Angiography
Thallum Scan
REVASCULARISATION PCl or CABG or Both

CABC
PCl

Temporal Changes in Rates of Cardiac Stress tests without imaging per 1000, by Gender, Adjusted for Age, Medicare, 1993-2001

Annual decrease

Temporal Changes in Rates of Cardiac Stress Imaging

 Procedures per 1000, by Gender, Adjusted for Age, Medicare, 1993-2001Annual increase

Temporal Changes in Rates of Cardiac Catheterisation

 Procedures per 1000, by Gender, Adjusted for Age, Medicare, 1993-2001Annual increase

Standardised Mortality Rates in Angina

Hemingway JAMA 2007

Gender Differences in Angina

Euro Heart Survey of Stable Angina

Daly et al Circulation 2006

Euro Heart Survey of Angina

- Pan European Survey of patients with stable angina presenting to cardiologists in Europe, with one year follow-up
- Based on ambulatory, non hospitalised patients
- Full complement of investigations and treatments surveyed across countries, also clinical outcome

Initial survey: March 2002 to December 2002
Follow up:
March 2003 to January 2004

Which patients?
 EHS Angina

Definition

- Out-patient at a new presentation to a cardiologist
- in whom diagnosis is made, on clinical assessment,
- of stable angina caused by myocardial ischaemia
- due to coronary disease,
- and who does not have unstable angina.

Excluding patients with Class IV symptoms, those admitted to hospital within 24 hrs , those with prior revascularisation, or MI within 1 year

	Male $\mathrm{n}=2196$	Female $\mathrm{n}=1582$	p	Overall
Mean age (\pm sd)	$60(11)$	$62(11)$	<0.0001	$61(11)$
Diabetic	17%	19%	0.17	18%
Hypertensive	58%	66%	<0.0001	62%
Hyperlipidaemia	57%	59%	0.24	59%
Ever Smoked	69%	30%	<0.0001	57%
Periph. Vasc. Dis	7%	7%	0.32	7%
Prior CVA/TIA	6%	4%	0.02	5%
Prior MI (>1 year)	5%	3%	0.004	4%
CCS Class I	39%	32%		36%
CCS Class II	43%	47%	<0.0001	45%
CCS Class III	12%	11%		12%
Signs of HF	8%	8%	0.81	8%

Completeness of follow up EHS Angina

- Initial survey

Total Follow up

- Suitable for analysis
- Final Follow up 80\%

Effect of sex on use of investigations: Initial 4wks

Less likely to have test More likely to have test

Medication post initial assessment for patients with completed follow up
 EHS Angina

Investigations performed in 1 yr EHS Angina

Male Female pvalue Overall

Echo	64%	65%	0.37	64%
Ex ECG	78%	73%	0.001	76%
Stress Echo	4%	4%	0.14	4%
Perfusion	13%	15%	0.35	14%
Angiography	47%	34%	<0.001	41%

Coronary Disease Status at 1 year EHS Angina

Male

Confirmed CAD
Negative tests

Female

Positive non-invasive tests
Inconclusive or no tests

Results of angiography

EHS Angina

$\mathrm{n}=1253$ males $=821$ females $=432$

Meds at 1 year in those with confirmed CAD

Male Female pvalue Overall

Antip
lowering
94\% 92\%
0.156

93\%

76\%
0.057

80\%
71%
0.013

76\%
$77 \% \quad 82 \%$
0.141

78\%

Effect of sex on revascularisation EHS Angina

*Adj. OR F vs M

p value

$0.56<0.001$
$0.19<0.001$
$0.19<0.001$
0.68
0.002

Revascularisation
planned/performed within 4 wks
Revascularisation at 1 year
Revascularisation at 1 year in women with CAD
*Adjusted for age, symptom severity and other factors predictive at univariate level

Effect of sex on risk of death/MI EHS Angina

*MV HR 95\% CI p value

$\begin{array}{llll}\text { Female vs Male } & 2.08 & 1.13-3.83 & 0.01\end{array}$

Abnormal LV Fxn. $\quad 2.03 \quad 1.04-3.94 \quad 0.04$

Multivariate HR adjusted for age, DM, LV function and severity of CAD

Summary I

EHS Angina

- Significantly less use of antiplatelet and lipid lowering therapy in women even after CAD has been confirmed
- Women with angina are significantly less likely to receive either non-invasive or invasive investigation, even after adjustment for age, comorbidity, symptom severity or the results of preliminary investigation.
- Women significantly less likely to receive revascularisation than men, even in the presence of confirmed CAD
- Women with angina and confirmed CAD have a significantly worse prognosis than men
- more than twice as likely to suffer death or MI during follow up, independent of the effects of age, diabetes, LV function or severity of CAD

Conclusions of EHS Angina

Women with stable angina are

- Under-investigated
- Under-treated
even though
- Symptoms more severe
- Women with proven CAD have worse prognosis

Scope of the problem

- Cardiovascular risks/Primary prevention
- Hypertension
- Hyperlipidaemia
- Coronary Heart Disease
- Angina
- Acute coronary Syndrome/MI
- Heart Failure
- Arrhythmia
- Congenital Heart Disease

Population prevalence

1)*NHANES-I ${ }^{2}$

3) ${ }^{* *}$ Glasgow ${ }^{4}$

2) ${ }^{*}$ Framingham ${ }^{3}$

4) ${ }^{* *}$ Rotterdam ${ }^{5}$

[^0]
Gender differences in care of Heart FailureUK data, primary care

Median age (yr)
All patients on diuretics
73
60/40
($n=505$)
Patients with heart failure
76
47/53
($n=281$)
Patients referred to hospital
($n=230$)
Patients treated by GP
71
48/52
($n=275$)
Clarke et al, Br Heart J 1994

Euro Heart Survey of Heart Failure I

- N= 11304 patients from across Europe
- 116 hospitals
- Suspected or confirmed Heart Failure
- Mean age 71years, 53\% male
- First diagnosis on index admission in 27\%

EF in women (2048; 41\% of total enrolled) and men (3249; 57\% of total enrolled) in EHS Heart Failure I

Left Ventricular Ejection Fraction (\%)
51% of men but only $\mathbf{2 8 \%}$ of women had a left ventricular EF $<40 \%$

OR (adj) of use of medication for men v women in EHS Heart Failure I

Odds ratio (95\% CI)
B Blockers
CCB
Anti thrombotic
ACE i
Spironolactone
Aspirin
1.16 (1.05 to 1.29)*
0.79 (0.71 to 0.88)*
1.19 (1.00 to 1.40)
1.34 (1.22 to 1.48)*
1.28 (1.15 to 1.43)*
1.34 (1.23 to 1.46)*

Montreal multidisciplinary HF clinics 2000-02

 $\mathrm{N}=765$, 27\% female, mean age 65 yrsHospital admissions with CHF: 3006 men 2890 women All, \% Men, \% Women, \%

Beta-blockers
ACE inhibitors
ARBs
ACE or ARBs
Nitrates
Cardiac glycoside
Antiplatelet agents
Diuretics
Antiarrhythmic

78
74
21
88
50
69
56
89
24

81
77
20
90
51
69
57
91
27
17
0.003
0.001
0.138
0.002
0.173
0.477
0.129
0.040
0.006

Montreal Study: use of meds

Use of medications	OR	Cl
BB	0.58	$0.32-0.78$
ACE or ARB	0.50	$0.32-0.78$
	Adjusted OR	Cl
BB (adjusted for Systolic Function)	0.77	$0.50-1.19$
ACE or ARB (adjusted for Systolic Function)	0.80	$0.44-1.44$

Use According to Canadian Guidelines	Men	Women	p
BB	87%	82%	0.21
ACE	84%	75%	0.06
ACE or ARB	97%	95%	ns

Euro Heart Survey Heart Failure II

- 133 hospitals in 30 European countries
- October 2004 to August 2005
- Patients admitted to hospital with dyspnoea and verification of HF (new-onset AHF or ADCHF) based on (i) symptoms and signs of HF and (ii) lung congestion on chest X-ray.
- $n=3580$ patients

Euro Heart Survey Heart Failure II

Gender differences EHS Heart Failure II

- Diuretics
- Aldosterone antagonists
- ACE inhibitors (ACEI)
- Angiotensin receptor blockers (ARB)
- Beta-blockers
- Digitalis compounds
- Anti-arrhythmic drugs
- Calcium channel blockers
- Oral nitrates
- Aspirin
- Vitamin K antagonist
- Lipid regulating drugs
- Insulin
- Oral antidiabetics
- Echocardiography
- Exercise testing
- Holter monitoring

Arterial line

- Pulmonary artery catheter
- IABP
- Thrombolysis
- Coronary angiography
- PCI/CABG
- Heart transplantation
- BNP/NT-proBNP tested
- Length of stay (days)
- Admission to ICU/CCU
- In hospital Mortality
- Death, MI or stroke

NO Gender differences EHS Heart Failure II

- Diuretics
- Aldosterone antagonists
- ACE inhibitors (ACEI)
- Angiotensin receptor
- Beta-blockers
- Digitalis compo
- Anti-arrhythr
- Calcium ct c^{2} olockers
- Oral nit
- Aspir
- $\mathrm{Vi}^{+} \mathrm{N}^{0}$ ィ antagonist
- Lipi egulating drugs
- Insulin
- Oral antidiabetics
- Echocardiography
- Exercise testing
- Holter monitoring
ars (ARB) - Arterial line
- Pulmonary artr
neter
- IABP
- Thrombo'
- Coron= ar aography
ansplantation
らlo,NT-proBNP tested , gth of stay (days) Admission to ICU/CCU
- In hospital Mortality
- Death, MI or stroke

Expected survival curves for 60 and 80 year old men and women hospitalised for acute heart failure

Nieminen, M. S. et al. Eur J Heart Fail 2008 10:140-148;

Adjusted risk of death at 5 years in men and women (diabetics v non diabetics). Excluding patients who died in the first 30 days.

Patients discharged from hospital in Scotland ($\mathrm{n}=116$ 556) from 1986 to 2003 with a diagnosis of HF analysed by diabetes and sex

NHANES I, II and III: Diabetes And CVD mortality

Conclusions

- Systematic bias in the use of investigations and treatment across range of indications
- Lack of improvement in age standardised CVD mortality rates for women
- Early signs that awareness and vigilance can improve discrepancies, await impact on morbidity and mortality

[^0]: *based on clinical criteria
 **based on echocardiography

